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Abstract: Electron impact (EI)-induced cyclizalions of 1,16diaxa[6]helicene (l), of 1,14_diaza[6]helicene (2) and of 
3,14_diaza[6]helicene (3) to monoazacoronenes (abundant loss of HCN and H) were investigated through their source 
spectra supported by accurate mass measurements, their unimolecular metastable ion (MI) spectra, and their high-energy 
(8Ke.V) collisiorrinduced dissociation (CID) tandem mass spectra obtained with a four-sector mass spectrometer. 

High-energy collision-induced dissociation (CID) mass spectra’ using the advantageszA of tandem mass 

spectrometry (MS/MS) are very useful for obtaining knowledge of ion structure and fragmentation mechanisms. We 

have previouslys-9 used this technique as well as source spectra and me&stable ion (Ml) spectra, to establish the 

mechanisms of intramolecular cyclizations of sterically crowded aromatic diamines. 

The present report discusses the cyclization of three crowded new diaza[6]helicenes’0 - 1,16-diaxa[6]helicene 

(l), 1,14-diaza[6]helicene (2), 3,14-diaza[6]heiicene (3) - to monoaxacoronenea comparing their mass spectra with 

that of isomeric naphtho[2,1-h:7,6-h’]diquinoline 4 (Fig. 1). 
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Figure 1. 70 eV EI spectra of compounds I-4. 

As expected , compounds l-4 show abundant molecular ions at m/z 330 and [M-H] ions of various intensities at 

m/z 329 (Fig. 1). For all the molecular ions (l-4) and their fragments we also found the corresponding doubly 

charged ions (not shown). Compound 4 (Fig. 1) exhibits in its spectrum only the normal features to be expected in 

the mass spectra of polynuclear heteroaromatic hydrocarbons, losing only hydrogen. 
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Using 70 eV EI source spectra, MI spectra (not shown) and CID MS/MS spectra, we established the 

fragmentation pathways of 1, 2 and 3 (Schemes l-3). 

All three diaza[6]helicenes cyclize purely by abundant loss of HCN and H to stable strainfree heteroaromatic 

ions of monoazacoronene structure (b and c or f and g, Scheme 1). Neither C2H4 (even from 3) nor C2H2 was 

released; no doublets were found in a high resolution (HR) mode of 50,000. These cyclizations to the azacoronene 

system very probably involve [4+2] cycloadditions. 
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Scheme 1. Cyclization of l-3 to monoazacoronene ions under electron impact. 

The question is whether these cycloadditions take place before or after the HCN elimination? 

Previous EI studies on structurally similar [6]helicenes and monoaza[6]helicenes” have shown that the ethylene- 

and/or HCN- loss channel for the molecular radical cation is typical of the formation of coronene or of 

azoniacoronenes via intramolecular Diels-Alder cyclization and subsequent elimination “. On the other hand, the 

same energy channel and the same favourable entropy factors for the intramolecular reaction , with relief of steric 

strain and formation of a continuously conjugated x-electron system in coronenes, would also contribute to 

facilitate the loss of HCN prior to [4+2] cycloaddition (at least as easily and completely as, for example, from 

quinoline and isoquinoline and with the same high structural integrlty’39’4). 
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Scheme 2. Fragmentation pathways of compound 1; pathways investigated and confirmed by 
unimolecular MI spectra (0 ) and CID MS/MS (+). 
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Only for 1 the Die&Alder cycloaddition probably takes place prior to HCN ejection since only here we found 

two distinct intermediate fragment ions (d, m/z 303 and b, mh 329) on two distinct fragmentation routes leading to 

the same azoniacoronene ion c at m/z 302 namely loss of H from the adduct la 4 b (m/z 329, 70% rel. inc.) 

followed by HCN loss to c or fragmentation of HCN from la -4 (m/z 303) followed by I~W of H to c . Obviously, 

this fragmentation mechanism is dependent on the specific positions of the two nitrogen atoms in 1. 

It would therefore be difficult to evaluate the (if any, probably modest) contribution of a fragmentation pathway 

l-+c via a (a benzocyclobutadiene intermediate15 at mh 303 in which the [4+2] cycloaddition would take place 

@&s-‘~ HCN ejection) to the unimolecular decomposition of 1. 

On the other hand, for 3 neither the EI nor the MI spectra show any distinct H and HCN two-step 

fragmentations (Fig. 1, Scheme 3). From the molecular ion 3 only a simultaneous loss of H and HCN to abundant 

ion f ([M-HzCN], m/z 302) was observed. The HCN fragmentation occurs very probably prior to 

the [4+2] cycloaddition, via very short-lived transient species such as e’, which cyclize to e and lose H before they 

leave the source. The final stabilization of the positive charge is then achieved by subsequent loss of H 

to the azacoronene radical cation g ([M-H$N-H], m/z 301). 
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Scheme 3. Fragmentation pathway of 3 confirmed by MI spectra (0) and CID MS/MS (+), 

High-energy CID MS/MS spectra of helicenes l-3 and of their fragments are very characteristic and as 

distinguishing as fingerprints. The bimolecular reactions, which occur in the third field-free region of the tandem 

mass spectrometer, give rise to peaks similar to those of the source spectra*+ and to those due to MI 

fragmentations’; but they provide more information due to far more peaks (product ions generated by 8keV collision 

with helium atoms). For structural attributions we used data from these product-ion MS/MS spectra because of 

their proven superior reliability in characterking organic ionsa. 

Our results show that small structural differences among molecular ions l-3 produce significant differences 

among their CID MS/MS spectra ( Fig. 2). 
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Figure 2 . Comparison of the CID MS/MS spectra of the molecular ions of isomeric compounds 1-3. 



The ~n-~~~rn~abIe CID MS,%& spectra of ions e (from 1) and f {from 5) both at m& 302 (Fig. 3) provide 

clear evidence of their structural difference. The su~~m~biiity of the CID spectra of the ions at mkz 301 from 2 
and from 3 (Fig. 4) reflect their identical structure (ion g). From 2 our CID data (Fig. 4, Scheme 1) show the 

formation of ion g at m/z 301 and of a mixture of ions c and I at m/z 302 (not shown). 

Figare 3, Comparison of the CID MS/MS spectra of monoazawrvnene ions c and f (m/z 302) from 1 and 3. 

Figure 4. Comparison of the CID MS/MS spectra of monoazacoronene ion g (m/z 301) from 2 and 3. 

Experimental, The 8 keV CID spectra were obtained with a Fisons ZAB Z/70 SE four-sector (BEER) mass spectrometer 

equipped with PDP 11/73 and VAX data systems by admitting helium to a collision cell in the field-free region ahead of the 

electrical sector of the second mass spectrometer . MI spectra (unimolecular linked scans at constant B/E) , low-resolution 
spectra and HR El spectra were measured with both a Fisons ZAB ZE and a JEOL SX-102A mass spectrometer using direct 
hertion probes. 
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